skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leamy, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Digital image correlation (DIC) is an increasingly popular and effective non-contact method for measuring full-field displacements and strains of deformable bodies under load. Current DIC methods applied to bodies undergoing large displacements and rotations require a large measurement area for both the reference (i.e., undeformed) image and the deformed images. This can limit the resulting resolution of the displacement and strain fields. To address this issue, we propose a two-stage dynamic DIC method capable of measuring displacements and strains under material convection with high resolution. During the first stage, the reference image is assembled from smaller, high-resolution images of the undeformed object obtained using a spatially-fixed or moving frame. Following capture, each sub-image is rigidly translated and rotated into its appropriate place, thereby producing a full, high-resolution image of the reference body. In stage two, images of the loaded and deformed body, again obtained using a small camera frame with high resolution, are aligned with matching regions of the undeformed composite image using BRISK feature detection before performing DIC.We demonstrate the method on a contact problem whereby an elastomeric roller travels along a rigid surface. In doing so, we obtain fine resolution measurements of the state of strain of the region of the roller sidewall in contact with the substrate, even as new material convects through the region of interest. We present these measurements as a series of images and videos capturing strain evolution as the roller transitions from static loads to a fully dynamic steady-state, documenting the effectiveness of the method. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. We experimentally demonstrate a topologically protected electroacoustic transistor. We construct a reconfigurable phononic analog of the quantum valley-Hall insulator composed of electrically shunted piezoelectric disks bonded to a patterned plate forming a monolithic structure. The device can be dynamically reconfigured to host one or more topological interface states via breaking inversion symmetry through selective powering of shunt circuits. Above a threshold, the amplitude of wave energy at a chosen location in one topological interface creates a second interface by dynamically switching power between two groups of shunts using relays. This enables the flow of wave energy between two locations in the reconfigured interface analogous to the voltage-controlled electron flow in a field effect transistor. The amplitude of wave energy in the second interface is used for bit abstraction to implement acoustic logic. We illustrate the various states of the transistor and experimentally demonstrate wave-based switching. The proposed electroacoustic transistor is envisioned to find applications in wave-based devices and edge computing in extreme environments and inspire novel technologies leveraging acoustic logic. 
    more » « less
  3. Elastomeric rollers are important components in applications such as printing and roll-to-roll manufacturing. To gain insight into roller mechanics and provide a basis for further investigations into dynamic rolling problems where rolling instabilities and rolling friction arise, we employ a specially designed apparatus to obtain displacement and strain fields via digital image correlation (DIC) under applied loads.We test loading scenarios leading to impending slip of an elastomeric roller, mounted on a steel hub, and in contact with a glass (rigid) substrate. We first examine strain fields under normal loading and compare them with the closest analytical predictions. We also analyze the strain fields under normal and tangential loading for which limited analytical predictions exist. For each loading scenario, we discuss the displacement and strain fields of the roller sidewall and contact interface. We implement a conceptual string model to demonstrate how stick and slip zones develop within the contact area as well as how memory effects arise during cyclic loading. This memory effect is then verified experimentally using the DIC strain fields. Additionally, we demonstrate a means for identifying the stick zone area between the roller and substrate using the experimentally-obtained displacement fields. We believe the apparatus, and the ability to obtain experimental displacement and strain fields, will prove valuable in understanding roller mechanics and associated instabilities. 
    more » « less
  4. We review the notion of “phase bit” or “phi-bit” in externally driven nonlinear acoustic metamaterials. Phi-bits are classical analogues of quantum bits, which open pathways to promising and validated modes of initializing, operating, and measuring information. Acoustic metamaterials offer ways to compute information using phase that should compare favorably with state-of-the-art quantum systems without suffering from quantum fragility. 
    more » « less
  5. In this paper we conceptualize electroacoustic transistors based on topologically protected interface states in a reconfigurable valley-Hall topological insulator. Using piezoelectric media and active shunt circuits, we numerically model the spatial inversion symmetry breaking in a unit cell to produce topological bandgaps. These gaps are known to host robust modes for wave propagation along an interface. We use two such modes to design a transistor where the wave propagation in one topological channel switches on or off a second topological channel between a source and receiver elsewhere in the structure. Multiple such transistors may be combined to develop logic gates. Further, we develop and simulate the behavior of an electronic circuit which enables the transistor action. Our design opens a pathway to novel wave-based devices which may find applications in structure-based computing, as hybrid multiplexers in communication devices, and as structural switches or embedded sensors in robotics and internet of things. 
    more » « less
  6. We propose an electroacoustic transistor enabled by reconfigurable topological insulators (TIs). The underlying structure of the device is a hexagonal lattice with a unit cell consisting of piezoelectric disks bonded to an aluminum substrate. First, we study the dispersion of flexural waves in the reconfigurable TI to identify Dirac cones in the band structure of a unit cell possessing C6v-symmetry. A topological bandgap can be opened by breaking inversion symmetry in the unit cell. This is achieved by altering the elastic response of one of the affixed piezoelectric disks using a negative impedance shunt circuit. Next, we analyze various topological states formed by interfacing mirror-symmetric unit cells. Sublattices with interface states are then combined to construct a transistor supercell which hosts at least two topologically protected channels for wave propagation. The amplitude of an incoming acoustic signal propagating in one of the topological channels, referred to as the ‘Gate’, is used to switch on or off a second topological channel between a wave source and receiver, mimicking the behavior of a field effect transistor in electronics. We employ finite element analysis to study the harmonic response of the transistor structure demonstrating the OFF and ON states of the device. Further, we present a mock-up of an electrical circuit which enables the switching of the topological channel between a wave source and receiver. The design of the proposed wave-based transistor promises the advantage of topological protection and may find applications in wearable devices, edge computing, and sensing in harsh environments. 
    more » « less
  7. Abstract We investigate the spectral properties of one-dimensional spatially modulated nonlinear phononic lattices, and their evolution as a function of amplitude. In the linear regime, the stiffness modulations define a family of periodic and quasiperiodic lattices whose bandgaps host topological edge states localized at the boundaries of finite domains. With cubic nonlinearities, we show that edge states whose eigenvalue branch remains within the gap as amplitude increases remain localized, and therefore appear to be robust with respect to amplitude. In contrast, edge states whose corresponding branch approaches the bulk bands experience de-localization transitions. These transitions are predicted through continuation studies on the linear eigenmodes as a function of amplitude, and are confirmed by direct time domain simulations on finite lattices. Through our predictions, we also observe a series of amplitude-induced localization transitions as the bulk modes detach from the nonlinear bulk bands and become discrete breathers that are localized in one or more regions of the domain. Remarkably, the predicted transitions are independent of the size of the finite lattice, and exist for both periodic and quasiperiodic lattices. These results highlight the co-existence of topological edge states and discrete breathers in nonlinear modulated lattices. Their interplay may be exploited for amplitude-induced eigenstate transitions, for the assessment of the robustness of localized states, and as a strategy to induce discrete breathers through amplitude tuning. 
    more » « less